Theory of Covering Spaces

ثبت نشده
چکیده

Introduction. In this paper I study covering spaces in which the base space is an arbitrary topological space. No use is made of arcs and no assumptions of a global or local nature are required. In consequence, the fundamental group ir(X, Xo) which we obtain frequently reflects local properties which are missed by the usual arcwise group iri(X, Xo). We obtain a perfect Galois theory of covering spaces over an arbitrary topological space. One runs into difficulties in the non-locally connected case unless one introduces the concept of space [§l], a common generalization of topological and uniform spaces. The theory of covering spaces (as well as other branches of algebraic topology) is better done in the more general domain of spaces than in that of topological spaces. The Poincaré (or deck translation) group plays the role in the theory of covering spaces analogous to the role of the Galois group in Galois theory. However, in order to obtain a perfect Galois theory in the non-locally connected case one must define the Poincaré filtered group [§§6, 7, 8] of a covering space. In §10 we prove that every filtered group is isomorphic to the Poincaré filtered group of some regular covering space of a connected topological space [Theorem 2]. We use this result to translate topological questions on covering spaces into purely algebraic questions on filtered groups. In consequence we construct examples and counterexamples answering various questions about covering spaces [§11 ]. In §11 we also discuss other applications of the general theory of covering spaces—e.g., a theory of covering spaces with singularities [§2, Example 1; §11, Example l]; the defining of a "relative fundamental group" ir(X, A) [§2, Example 2; §11, Example 3]; the interpretation of the étale coverings in characteristic 0 of algebraic geometry as covering spaces [§11, Example 2]; and the resolution of the classical problem of the classification of the covering spaces of the topological space : {(0,0)} VJGraph [sin ( 1 /x), x > 0 ] [§11, Example 4]. The following table summarizes some of the similarities between Galois theory and the theory of covering spaces:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covering Spaces in Homotopy Type Theory∗

Broadly speaking, algebraic topology consists of associating algebraic structures to topological spaces that give information about their structure. An elementary, but fundamental, example is provided by the theory of covering spaces, which associate groups to covering spaces in such a way that the universal cover corresponds to the fundamental group of the space. One natural question to ask is...

متن کامل

Semi-Rothberger and related spaces

In this paper our focus is to study certain covering properties in topological spaces by using semi-open covers. A part of this article deals with Rothberger-type covering properties. The notions of s-Rothberger, almost s-Rothberger, star s-Rothberger, almost star s-Rothberger, strongly star s-Rothberger spaces are defined and corresponding properties are investigated.

متن کامل

A Skeleton in the Category: the Secret Theory of Covering Spaces

In this paper, we try to give as comprehensive an account of covering spaces as possible. We cover the usual material on classification and deck transformations, and also show how to perceive the subject from a more abstract categorical view point. The reader is assumed to possess a working knowledge of basic topology and category theory.

متن کامل

Some aspects of cosheaves on diffeological spaces

We define a notion of cosheaves on diffeological spaces by cosheaves on the site of plots. This provides a framework to describe diffeological objects such as internal tangent bundles, the Poincar'{e} groupoids, and furthermore, homology theories such as cubic homology in diffeology by the language of cosheaves. We show that every cosheaf on a diffeological space induces a cosheaf in terms of t...

متن کامل

Quotient Maps with Connected Fibers and the Fundamental Group

In classical covering space theory, a covering map induces an injection of fundamental groups. This note reveals a dual property for quotient maps having connected fibers, with applications to orbit spaces of smooth vector fields and leaf spaces in general.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010